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A self consistent quantum mechanical treatment of atomic structures is presented. The method 
which is suitable for molecular calculations involves the optimization (sealing) of exponents of a 
minimal basis set of Slater orbitals and accounts semiempirieally for electron correlation. 

The calculation of successive ionization potentials as well as that of promotional energies lead 
to results in satisfactory agreement with experiment. 

Es wird ein selbstkonsistentes quantenmeehanisehes Verfahren ftir Atomstrukturen entwiekelt, 
das auch ftir MolekiJle geeignet ist, und eine Optimierung ("sealing") der Exponenten von Slater- 
orbitalen in einem minimalen Satz der Basisvektoren sowie eine semiempirische Beriicksiehtigung 
der Elektronenkorrelation beinhaltet. 

Die bereehneten Ionisierungs- und Anregungsenergien stimmen gut mit den experimentellen 
Werten iiberein. 

Un traitement quantique self consistent des structures atomiques est d6crit. La m6thode qui 
est aussi valable pour le caleul des mol6cules introduit l'optimalisation (scaling) des exposents d'un 
"minimal basis set" d'orbitales de Slater et prend en consid6ration la correlation 61ectronique d'une 
mani6re semi empirique. 

Le ealcul des potentiels d'ionisations sueeessifs ainsi que eelui des 6nergies de promotion conduit 
a des r6sultats en accord satisfaisant avec l'exp6rienee. 

The various integrals appearing in "all valence electrons" methods may 
conveniently be classified in three categories depending on how many centers 
they involve. 

a) The one center integrals include the core attraction integral, the electron 
repulsion and exchange integrals and the kinetic term. 

b) The two center integrals consist of core or penetration integrals, resonance 
integrals, electron repulsion and various types of exchange integrals. 

c) The three and four center integrals, which are sometimes approximated 
in terms of two center integrals but often completely neglected. 

The purpose of this paper is to present a critical discussion of the various 
factors affecting the one center integrals and a consistent method for evaluating 
them in complex atomic structures. 

A semiempirical method designed for the "accurate" calculation of the energies 
of atomic structure would probably be welcomed but have only a relatively minor 
interest unless it may be inserted into a more sophisticated molecular model. 

* Present address: Institute of Physical Chemistry, Czechoslovak Academy of Science, Machova 
ul 7, Praha 2, Czechoslovakia. 
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Our objective therefore was to develop a theory of atomic structure for the specific 
purpose of including it into a molecular program. Part I of this series deals with 
the atomic procedure and Part II describes the subsequent molecular method. 

1. Introduction 

Most so called "all valence electrons" methods [11 make use of almost identical 
approximations for evaluating the one center "atomic terms". They consist 
essentially in determining from the known atomic spectra a set of parameters 
representing the various one center integrals [21 or "experimental" Slater-Condon 
parameters [3]. The values of these parameters are such that, when used in the 
appropriate atomic theory, they reproduce both valence state ionization potentials 
and electron affinities. The main difference between the various available pro- 
dures is, in addition to the type of parameters used, the way in which the bary- 
centers [-2] of the atomic states are chosen, i.e. the definition of the valence state. 

Unfortunately, none of these methods give satisfactory values for partly 
ionized atoms and the atomic parameters are apparently valid only within the 
range in which they have been determined. The reason for this failure can almost 
certainly be attributed to the relative contraction of the atomic orbitals upon 
ionization and it was shown that if such modification of orbital size is taken, 
even empirically, into account [4] the results can be greatly improved. This 
fact underlines the importance of the environment upon the magnitude of the 
various integrals and casts some doubts about the adequacy of the common 
practice of incorporating atomic parameters into molecular programs without 
any further modification [-5, 6]. 

It seems thus reasonable to investigate the importance of orbital size variation 
in isolated atoms and, if an appropriate method can be found to handle the 
problem, include it into molecular SCF calculations. The resulting program 
would allow us to estimate the appropriate atomic integrals within their molecular 
environment. 

Two alternate routes are available to us for such improvement. One consists 
in the widely used method of expanding the basis set. This procedure, however, 
presents numerous problems when incorporated into a semiempirical molecular 
framework by increasing the number of disposable parameters. In addition, it 
does not guarantee that the atomic functions contributing most to the atomic 
structure remain preponderant in the molecular combinations. 

Another solution can be attained by allowing the orbitals exponents to vary 
freely, so as to minimize the total energy. By successive iterations, self consistent 
"scaled" exponents can then be obtained that reflect the change in orbital size 
due to the atomic environment. The advantage of such a scheme is that it does not, 
in principle, require additional parameters when it is incorporated into a molecular 
program. 

We thus choose to follow the latter procedure and found that the minimization 
of the total energy with respect to each of these exponents can be carried out in 
a simple and efficient way. 
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2. T h e o r y  

The problem thus consists in developing a semiempirical theory of atomic 
structure including the variation of exponents of a minimal basis set of Slater 
orbitals. The theory should be suitable for use in SCF LCAO MO treatment of 
molecules. As given below, it deals specifically with first and second row elements 
assuming that only valence electrons are explicitly taken into account. Since our 
final objective is the calculation of molecular quantities we will reduce the total 
�9 atomic energy expression to the averaged form, or barycenter, which corresponds 
to the weighted mean of all the multiplets in the given configuration (m, n) of m 
s-electrons and np-electrons [-7]. 

E ( m , n ) = m  Ns a + n  Np 

+ 1/2 m ( m -  1) [-s.21 s. 2] + m. n{[s~ IP~] - 1/2 [SaPb [SaPb']} 

+ 1/2 n(n -- 1) [px~lpy~]. 

The first two brackets in Eq. (1) contain one-electron terms consisting of both 
kinetic energy and core attraction contributions. They are expressed in terms of: 

- Slater exponents a and b corresponding to s and p atomic orbitals, re- 
spectively, 

- kinetic factors K's theoretically equal to 2, 6., and 2. for the atomic orbitals 
(is), (2s) and (2p), respectively, 

- effective charges Z's, and, 
- principal quantum numbers N's. 
The notation of the two-electron integrals assumes that orbitals being functions 

of the same electron are on one side of the bracket. Their value can be expressed 
in the usual manner in terms of Slater-Condon parameters [-8] as follows 

<s~l g>-= (sZ, lp~) = F ~ 

4 2 
(px2, lpx~) = f ~ + -~ -  F 

(pxZ~ [py z )  = F o _ F 2 

(PXaPYblpx, PYb) = F 2 

1 ~G1 ( 2s.p xb l 2s.p xb ) = --f 

(2) 

The condition for optimization of the energy expression (1) with respect to 
the Slater exponents a and b 

~E(m, n) ~E(m, n) 
- o ( 3 )  

c~a ,~b 
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leads to the system of equations 

+0.5(1-m).A+n 0.5 [SaPbls, pb] 
(4) 

b=O.25 " Kp {Zp + (1-- n) B + m ( ~  [sapb'saPb] -- 2 ~-~ [P~ lS2a])} 

where A and B are numerical constants related to two-electron integrals involving 
STO's [9] as follows 

[s~ 2 [ Sa]theo~ = aA 
2 2 (5) 

[Pxb[Pyb]theor = b B  

A being equal to 0.625 and 0.363281 in case of (is) and (2s) orbitals respectively 
and B to 0.349219. 

Of course, even such variational procedure with theoretical integrals does 
not bring the calculated energy values satisfactorily close to experimental ones 
and, therefore, an additional introduction of parameters is necessary. The cor- 
rections may affect one and two-electrons integrals because of the following 
reasons. 

One Electron Integrals 
The theoretical value of the kinetic factor K s corresponding to a 2s Slater 

orbital is equal to 6 and thus very large in comparison with that of the 2s hydrogen- 
like functions where it is equal to 2.; it is the only case among the atomic orbitals 
of the considered limited basis set where such a discrepancy arises. However, 
since STO's may be considered as one-electron eigenfunctions [10] of a central 
field problem with the potential given by 

Zaf n*(n* - 1) V(r) = - - -  + (6) 
r 2r 2 

where Z a f  and n* are the effective nuclear charge and effective principal quantum 
number, respectively, a term depending on the square of the Slater exponent 
should be naturally added. Furthermore, if a screening model is adopted, the 
effective charges Z~ and Zp should not necessarily be equal in Eq. (1). Accordingly, 
two sets of parameters can and were left free for the fitting procedure. Either K~ 
and Kp (with theoretical values for Z~= Zp) or Z s and Zp (assuming that 
K~ = Kp = 2) will be fitted. 

Two-Electrons Integrals 

Many kinds of semiempirical theories show that the theoretical values of the 
one-center electron-electron repulsion terms are overestimated [11]. It seems 
evident that the main reason for the discrepancy is due to electron correlations 
and that the electron correlation is not satisfactorily accounted for even in the 
calculation of one-center electron Coulomb interaction integrals. In order to 
correct for this, we followed a procedure analogous to that proposed by Clementi 
[12] that consists in introducing the "Coulomb hole" as in the following way. 
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T a b l e  1. Correlation energies as function of orbital size for the lsZ-isoelectronic series a 

E l e m e n t  ov Ecorr 

H e  - 1.14 
Li + - 1.18 
Be 2+ - 1.19 

B a+ - 1.20 
C 4+ - 1.20 

a F r 6 m a n ,  A.: Rev.  rood .  Phys i c s  32, 317 (1960). 

In the calculations of the regular electron-electron Coulomb interaction 
integral, both electron distributions are considered as unaffected by each other. 
This situation does not reflect correctly the physical situation when the electrons 
are located in the same space region. For the sake of simplicity let us assume that 
we are dealing with a couple of electrons occupying each a spherically symmetric 
space corresponding to Slater type orbitals (N~So) and (NbSb), respectively. The 
Coulomb energy corresponding to the interaction of two electronic fractions 
occupying each the spherical shell defined by means of the radii R ( 1 - 6 )  and 
R(1 + 3) (6 being a free parameter) is given by 

I (R)=C'  I rf~"e-2"'~dr2 r~N~'e-eb'~dr2 + I rz2N~-~e-2b~dr2 (7) 
R(1-6 )  L r l  r l ( 1 - 6 )  r l  

where 

= 4 5 2  �9 C .  e -2(a+b)R.  R 2( /v~+/%)+1 

C = (2a)ZN" + 1 (2b)2Nb + 1 (8) 

(2N,) ! (2Ub) ! 

It may be expected that the sum of all these situations expressed as 

co [2(Na+Nb)+ 1]! a2U~+lb 2~b+x 
C o r r =  o ~ I(R) dR=462  (2N,)V (2Nb)!. (a+b)2r (9) 

is a measure of the quantity by which the atomic two-electron integrals could 
be corrected 

(aa/bb) = (aa/bb)~hoo, - Corr.  (10) 

For the case where one deals with interactions of electron belonging to the same 
shell i .e.: Na = Nb = N ,  this expression reduces to 

C o r r = 4 3 2  ( 4 N +  1)! (ab) 2N+1 (11) 
(2N)! (2N)! ( a+  b)  2 (2N+1)  

and by setting (a - b ) / (a  + b) = r one finally obtains 

1 t~ 2 ( 4 N +  1)! (1 - -"C2)  2 N + l  (12) 
Corr -- ~ (2N !)2 

= f~  - T2) 2N+1 (13) 
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where f0  may be considered to a first approximation as being a constant for any 
given atomic shell irrespective of its occupancy and orbital exponents. The 
Slater Condon parameter F ~ then becomes 

F ~ = <s~s, I sbsb> : <S,S~ I S b S b > t h e o r  - -  f~ - ~ . 2 ) 2 N + 1  . (14) 

Apparently the function 13 has interesting limit properties:First, if the size of 
both orbitals is equal (a = b, z 2=  0), the correction is a constant one and does 
not depeknd on the size of the orbitals; secondly, the bigger the difference between 
the sizes df the two orbitals, the smaller the correction term is. The latter conclusion 
corresponds to what intuitively one would have predicted for the correlation of 
electrons belonging to orbitals of increasingly different sizes. The former one, 
perhaps somewhat more surprising, can however be verified for ls 2 isoelectronic 
series where the correlation energy is found to be practically independent of the 
size of the ls orbital (Table 1). Finally, let us assume that a similar correction 
scheme can also be applied to the other components of the integrals in our calcu- 
lation 

so that, combining 
becomes 

F O  _ K,o ~co(1 _ 2 x 2 N +  1 "l 
(a,b) - -  ~t (a,b)theor - -d  ~.x - -  Z ) | 

/ 

lt?2 i72  r  _2".2N + 1 / 
--(.,b) = --(,,,b)th~or - J ~" - r~ ) ( ( 15 )  
g21 /"1 l z  I r  1 [ 
~J(a,b)  ~ I-r(a,b)theor - -  g I x  - -  ~ ) j 

Eq. (2) and (15), the expression for the various integrals 

[( ls)Zl( ls)2]i  = o F ( a , a ) t h e o r  - -  f ~  I 

[ ( 2 S ) 2 [ ( 2 S ) 2 - ] l  = 0 F ( a , a ) t h e o  r - -  f o  

o 
F ( a , a ) t h e o  r - -  fo + 2 2 [ F ( a , a ) t h e o r  - -  f I ] 

[(px)21(pr)Z]i = o 2 2 
F ( a , a ) t h e o  r __ f o  _ - ~  [ F ( a , a ) t h e o r  __ f ~ ]  

[(P~) (Py) I(P~) (pr)l, = f f 5  [Fr176 f 2 l  

[(2sa)Zl(pb)z]t = o Fca,b)theor -- fO(1 -- Z2) 5 

(Pb) l(2Sa) (Pb)]I ---- 1 [G(~,b)th~or -- 9~ (1 -- Z2) 5] [(2Sa) 

where fo ,  f~  and 9i are parameters to be adjusted for each specific atom I. 

(16) 

3 .  C a l c u l a t i o n  o f  D e r i v a t i v e s  o f  O n e - C e n t e r  C o u l o m b  I n t e g r a l s  

The minimization of the atomic energy with respect to the orbital exponents 
requires the calculation of first derivatives of one-center Coulomb integrals and, 
if the second order iteration process for the solution of the system of Eqs. (4) is 
used, even the calculation of corresponding second derivatives. We found that 
a convenient method of performing these calculations can be made based on 
the following observations. 
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The one-center Coulomb Integrals I(a, b) can be expressed in the product 
form [9] 

I(a, b)= 4" G(z) (17) 

G(z) being an even function in z and 

4= l (a+b) 

a - b (18) 
T - -  

a+b ' 

it is convenient to use the relations 

OI l [( dG(z) ] 
~ - -  ~ l - r )  dzz G(z) , (19) 

where dG('c)/dz is an odd function of z. Because of (17), (18) and (19), one finally 
also obtains: 

I = a ~ a  a + b 0b-" (20) 

In this interesting equation, representing the Coulomb repulsion between two 
electrons, ~?I/Oa can be interpreted as the screening of the electron in orbital of 
exponent a by that in orbital of exponent b and ~?I/Ob as the screening of the electron 
in orbital b by that in a. The relationship is apparently general and valid irre- 
spective of the type oforbitals involved. Furthermore, when the Coulomb integral 
is evaluated via the associated Legendre polynomial method. 

Fk=Na3+~b3+U ~ rk< e-2a,~e-2br2r2+,~2+,a, dr 
0 0 ~ 1 12 ~'11 ~ 2 

(21) 

where N is a normalization constant, v and # depend on the type of orbitals 
and k on the Legendre polynomial term, 

It was found that 

Fk = Naa+vba +U [i e-2a'lr~-k+t drt ile- 2br2rt~+k+2dr2 
o (22) 

+ ~ ~ 
0 rl 

= Na 3 +Vb3 +u[-~ + fl]. (23) 

~ F k _ Na 2 +vb3 +uOr 

~a (24) 
cqFk _= Na 3 + Vb2 +l*fl. 
~b 

In other terms, in the process of calculating F k, its derivative with respect to a 
and b are normally evaluated and can be stored for use in the minimization 
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procedure. Finally the second derivatives can be obtained, when necessary, by 
the following equations: 

~2 I ~--~ d2 G('c) 
t3a2 - (1 - -  T) 2 d.c2 

(25) 
~32I _ 1 (z 2_1)  dZG('c~) 

OaOb 4~ dr 2 

4. Cal ibrat ion  o f  P a r a m e t e r s  and Resu l t s  

The most important energy properties which should be reproduced by 
calculation are the ionization potentials of both s- and p-electrons, and the electron 
affinity. The experimental data [13, 14, 3] have, of course, to be corrected to 
transitions between average states; These have been computed and are collected 
in Table 2. The corresponding corrections to electron affinities were determined 
by isoelectronic extrapolation [15]. 

In addition to the above, the term splitting corresponding to individual electron 
configurations of neutral atoms should be reproduced as closely as possible. 
This can be achieved by fitting values of the Slater-Condon parameters Fe2p  a n d  

Ga~xp [16, 8] determined from the experimentally observed splittings. 

f2  = F t 2 h e o r _  F 2  (26) 
where 

Ft2h~or 25 - 6 {[(Px)21(px)21h- [(Px)21(py)21h} (27) 

and 

where 

1 1 1 (28) g = (Gtheo r - -  Gexp) (1 - za) 5 

Gt~heor = 3 [(2S.) (Pb)/(2Sa) (Pb)]theor �9 (29) 

The following properties have thus been fitted exactly for each atom. 
1. Energy necessary to remove a p electron from the neutral atom (transition 

between barycenters). 

Tab le  2. "Experimental" transition energies (in a.u.) for first and second row elements 

A t o m  T E T E T E 
(ml, n0 - (m2, n2) 

H (1, 0) - (0, 0) 0.5000 (2, 0) - (1, 0) 0.0276 
Li (1, 0) - (0, 0) 0.1982 (0, 1) - (0, 0) 0.1302 (2, 0) - (1, 0) 
Be (2, 0) - (1, 0) 0.3426 (1, 1) - (1, 0) 0.2190 (2, 1) - (2, 0) 
B (2, 1) - (1, 1) 0.5162 (2, 1) - (2, 0) 0.3049 (2, 2) - (2, 1) 
C (2, 2) - (1, 2) 0.7143 (2, 2) - (2, 1) 0.3920 (2, 3) - (2, 2) 
N (2, 3) - (1, 3) 0.9400 (2, 3) - (2, 2) 0.4849 (2, 4) - (2, 3) 
O (2, 4) - (1, 4) 1.1898 (2, 4) - (2, 3) 0.5823 (2, 5) - (2, 4) 
F (2, 5) - (1, 5) 1.4764 (2, 5) - (2, 4) 0.6856 (2, 6) - (2, 5) 

0.0301 
- 0 . 0 0 7 0  

0.0011 
0.0175 
0.0617 
0.0882 
0.1286 
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2. Energy necessary to remove an s electron from the neutral atom (transition 
between barycenters). 

3. Energy gained by adding an electron to the neutral atom (transition 
between barycenters). 

In addition, the gl parameter was fitted via Eq. (28). 
Two alternative parameter schemes have been followed. The first one uses 

theoretical values for Z~ and Zv assuming complete screening by inner electrons. 
The parameters here were chosen to be Ks,Kp,f ~ and g~. The second one assumed 
constant values for Ks = Kp = 2 and determines Z~, Zp, fi ~ and ~ .  In both cases, 
satisfactory values for f~  were obtained by setting 

f 2  = f o .  x (30) 

where x was found satisfactorily constant for all atoms under investigation and 
equal to 1.3293 for the first scheme and 1.5734 for the second one. The procedure 
consist in determining the value of the parameters that fit exactly the above energy 
criteria. The orbital exponents are optimized separately for every atomic electron 
configuration (m, n) but the values of Ft2heor and Gatheor a r e  calculated using the 
exponents obtained for the electronic configuration corresponding to the ground 
state. No experimental data being available for the p orbital of Li, its 91 term was 
arbitrarily set equal to 0. In the case of Beryllium the #1 term was determined 
by extrapolation from the higher elements. For Li and Be, the optimized p exponents 
are those which were obtained from the calculation of the first excited state. 

Table 3. Parameter scheme 1 

Atom K s Kv f o  gi G.S. energy exp-s exp-p 
(a.u.) 

H 2.0 0.05494 - 0.5 1.0 
Li 3.1712 2.0832 0.06760 0 - 0.1982 0.793 

Be 3.10198 2.23250 0.079379 0.158757 - 1.1181 1.269 
B 2.90671 2.29276 0.061739 0.123972 - 2.8972 1.762 
C 2.69493 2.18108 0.062439 0.129135 - 5.8029 2.168 
N 2.46072 2.01729 0.067781 0.104988 - 9.8589 2.443 
O 2.36219 1.97437 0.069712 0.088401 -15.6940 2.791 
F 2.26770 1.92086 0.073332 0.054714 -23.3323 3.094 

1.222 
1.514 
1.741 
2.031 
2.297 

Table 4. Parameter scheme 2 

Atom Z s Z v f o  gl G.S. energy exp-s exp-p 
(a.u.) 

H 1.0 0.05494 - 0.5 1.0 
Li 1.2592 1.0206 0.02763 0 - 0.1982 0.630 
Be 2.37426 2.06071 0.036229 0.108687 - 1.0472 1.005 
B 3.42020 3.06592 0.034802 0.098034 - 2.6759 1.396 
C 4.42748 4.03767 0.043516 0.109296 - 5.4484 1.766 
N 5.35137 4.92844 0.063792 0.100488 - 9.4525 2.085 
O 6.33525 5.89373 0.071209 0.090036 - 15.2332 2.436 
F 7.28917 6.83005 0.082568 0.065736 - 22.9098 2.766 

1.151 
1.464 
1.742 
2.052 
2.349 
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In both schemes, good convergence was obtained and the parameters which 
were found to produce the best results are given in Table 3 for Scheme 1 and 
Table 4 for Scheme 2. These tables list also the calculated total energies and 
optimized exponents for the atomic ground states. Both schemes lead to satis- 
factory calculations of total energies of the various oxidized states of the atoms 
although Scheme 1 seems to provide slightly better values. Scheme i in contrast 
to Scheme 2 leads to reasonably constant values for the fo  terms and this agrees 
better with our initial appraisal of the correlation effect. Scheme 1 was thus 
adopted for further calculations. 

The "average" energies for all electronic configurations of the atoms calculated 
with scheme 1 are compared to the "experimental" ones in Table 5. The electron 
configuration (ls) 2 is considered to define the zero energy level and the relevant 
"experimental" values to which they correspond were determined from Ref. [13] 
and [-16]. The table also includes the energy separation between the barycenter 
and the lowest term state of the neutral atom. As can be seen from this table, the 
agreement between the calculated and experimental energies seem reasonable. 
A more appropriate evaluation of the method can be made as in Table 6, where 
its results for successive ionization potentials of fluorine are compared to other 
ones reported in the literature. 

From the comparison, it is clear that our results including exponents variation 
are far superior to the previous ones and this, in spite of the fact that the number 
of parameters does not exceed that of the other methods. The only other method 
that gave equivalent results is the 5 parameter procedure (column 4, Table 6) 
which took empirically also into consideration the orbital size variation. Unfortu- 
nately, that method was not general enough to be used in molecular calculations 
as it accounts for orbital size variation produced only by the atomic electronic 
occupancy and not be eventual neighbors. 

Table 6. Successive ionization potentials o f  fluorine (in e.V.) 

Ionization process K lopman  a Pople and Segal b K l opman  ~ Oleari et al. a Sichel and This work exp :  
(between barycenters) 4 Par. 3 Par. C N D O  5 Par. 6 Par. (1966) Whitehead e 4 Par. 

P N D O  (1964) (1965) (1965) 4 Par. (1967) 

s2p 6 ~ s 2 p  5 3.48 - 1.76 3.48 3.82 3.55 3.48 3.48 
s2pS--+s2p 4 18.66 23.92 18.66 18.73 18.61 18.66 18.66 
s2p4"-'~s2p 3 33.8 - -  36.9 33.4 37.7 36.2 37.8 
s 2 pa ._, s ~ p2 49.0 - -  58.1 48.8 47.7 56.2 60.2 
s2p 2 ~ s ~ p 64.2 - -  82.2 63.5 63.8 78.6 85.8 
s 2 p ~ s  2 79.4 - -  111.8 78.4 78.83 103.4 114.2 
s 2 ~ s  114.2 - -  159.3 114.0 114.5 152.8 157.2 
s ~  - 130.2 - -  193.6 131.0 129.5 189.0 185.2 

Ref. [2]. 
b Calculated from data in Ref. [5]. 

Ref. [4]. 
d Oleari, L., DiSipo, L., DeMichelis, G.: Molecular Physics 10, 97 (1966). 

Sichel,J. M., Whitehead, M.A.: Theoret. chim. Acta (Bed.) 7, 32 (1967). 
f Ref. [13]. 
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Obv ious ly  the d i sc repancy  observed  be tween  the ca lcu la ted  and  exper imenta l  
ion iza t ion  po ten t i a l s  of  a t o m s  in a high o x y d a t i o n  state is no t  of p a r a m o u n t  
i m p o r t a n c e  in mo lecu la r  ca lcula t ions  of essential ly neu t ra l  molecules.  

But  the  very fact tha t  such a d i sc repancy  is found  suggests  tha t  the m e t h o d  
which p roduces  it does  no t  p rope r ly  t ake  into  account  the a tomic  env i ronmen t  
and  m a y  thus  lead  to  e r roneous  results  even for the eva lua t ion  of a tomic  integrals  
of  essent ial ly  "neu t ra l "  a t o m s  in molecules.  Such a d i sc repancy  could  p r o b a b l y  
be t aken  p r o p e r l y  in to  accoun t  by  using the var iab le  exponent  m e t h o d  descr ibed  
above  to  ca lcula te  a tomic  te rms  in molecules.  
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